DMQEA: Dual Multiobjective Quantum-inspired Evolutionary Algorithm
نویسندگان
چکیده
This paper proposes dual multiobjective quantum-inspired evolutionary algorithm (DMQEA) with the dualstage of dominance check by introducing secondary objectives in addition to primary objectives. The secondary objectives are to maximize global evaluation values and crowding distances of the solutions in the external global population obtained for the primary objectives and the previous archive obtained from the secondary objectives-based nondominated sorting. By employing the secondary objectives for sorting the solutions in each generation, DMQEA can induce the balanced exploration of the solutions in terms of user’s preference and diversity to generate preferable and diverse nondominated solutions in the archive. To demonstrate the effectiveness of the proposed DMQEA, empirical comparisons with MQEA, MQEA-PS, and NSGA-II are carried out for benchmark functions.
منابع مشابه
Dual Multiobjective Quantum-Inspired Evolutionary Algorithm for a Sensor Arrangement in a 2D Environment
This paper proposes dual multiobjective quantum-inspired evolutionary algorithm (DMQEA) for a sensor arrangement problem in a 2D environment. DMQEA has a dual stage of dominance check by introducing secondary objectives in addition to primary objectives. In an archive generation process, the secondary objectives are to maximize global evaluation values and crowding distances of the non-dominate...
متن کاملDistributed Multiobjective Quantum-Inspired Evolutionary Algorithm (DMQEA)
Most of the multiobjective evolutionary algorithm inherently has heavy computational burden, so it takes a long processing time. For this reason, many researches for reducing computational time have been carried out, in particular by using distributed computing such as multi-thread coding, GPU coding, etc. In this paper, multi-thread coding is used to reduce computational time and applied to mu...
متن کاملOn the Convergence Properties of Quantum-Inspired Multi-Objective Evolutionary Algorithms
In this paper, a general framework of quantum-inspired multiobjective evolutionary algorithms is proposed based on the basic principles of quantum computing and general schemes of multi-objective evolutionary algorithms. One of the sufficient convergence conditions to Pareto optimal set is presented and proved under partially order set theory. Moreover, two improved Q-gates are given as example...
متن کاملMultiobjective Imperialist Competitive Evolutionary Algorithm for Solving Nonlinear Constrained Programming Problems
Nonlinear constrained programing problem (NCPP) has been arisen in diverse range of sciences such as portfolio, economic management etc.. In this paper, a multiobjective imperialist competitive evolutionary algorithm for solving NCPP is proposed. Firstly, we transform the NCPP into a biobjective optimization problem. Secondly, in order to improve the diversity of evolution country swarm, and he...
متن کاملMultiobjective Quantum-Inspired Evolutionary Algorithm with Preference-Based Selection 2: Comparison Study
This paper proposes an improved version of multiobjective quantum-inspired evolutionary algorithm with preference-based selection (MQEA-PS2). Unlike MQEA-PS, global population is sorted and divided into groups, and then upper half individuals in each group are selected by global evaluation and globally migrated to subpopulations in the MQEAPS2. Fuzzy integral is employed for global evaluation o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014